Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1296619, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638830

RESUMEN

The genus Senna contains globally distributed plant species of which the leaves, roots, and seeds have multiple traditional medicinal and nutritional uses. Notable chemical compounds derived from Senna spp. include sennosides and emodin which have been tested for antimicrobial effects in addition to their known laxative functions. However, studies of the effects of the combined chemical components on intact human gut microbiome communities are lacking. This study evaluated the effects of Juemingzi (Senna sp.) extract on the human gut microbiome using SIFR® (Systemic Intestinal Fermentation Research) technology. After a 48-hour human fecal incubation, we measured total bacterial cell density and fermentation products including pH, gas production and concentrations of short chain fatty acids (SCFAs). The initial and post-incubation microbial community structure and functional potential were characterized using shotgun metagenomic sequencing. Juemingzi (Senna seed) extracts displayed strong, taxon-specific anti-microbial effects as indicated by significant reductions in cell density (40%) and intra-sample community diversity. Members of the Bacteroidota were nearly eliminated over the 48-hour incubation. While generally part of a healthy gut microbiome, specific species of Bacteroides can be pathogenic. The active persistence of the members of the Enterobacteriaceae and selected Actinomycetota despite the reduction in overall cell numbers was demonstrated by increased fermentative outputs including high concentrations of gas and acetate with correspondingly reduced pH. These large-scale shifts in microbial community structure indicate the need for further evaluation of dosages and potential administration with prebiotic or synbiotic supplements. Overall, the very specific effects of these extracts may offer the potential for targeted antimicrobial uses or as a tool in the targeted remodeling of the gut microbiome.


Asunto(s)
Antiinfecciosos , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Microbiota , Humanos , Extracto de Senna/análisis , Extracto de Senna/farmacología , Bacterias , Heces/microbiología , Semillas , Senósidos/análisis , Senósidos/farmacología , Antiinfecciosos/farmacología
2.
PLoS One ; 19(4): e0301381, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625903

RESUMEN

The current effort to valorize waste byproducts to increase sustainability and reduce agricultural loss has stimulated interest in potential utilization of waste components as health-promoting supplements. Tomato seeds are often discarded in tomato pomace, a byproduct of tomato processing, yet these seeds are known to contain an array of compounds with biological activity and prebiotic potential. Here, extract from tomato seeds (TSE), acquired from pomace, was evaluated for their ability to effect changes on the gut microbiota using an ex vivo strategy. The results found that TSE significantly increased levels of the beneficial taxa Bifidobacteriaceae in a donor-independent manner, from a range of 18.6-24.0% to 27.0-51.6% relative abundance following treatment, yet the specific strain of Bifidobacteriaceae enhanced was inter-individually variable. These structural changes corresponded with a significant increase in total short-chain fatty acids, specifically acetate and propionate, from an average of 13.3 to 22.8 mmol/L and 4.6 to 7.4 mmol/L, respectively. Together, these results demonstrated that TSE has prebiotic potential by shaping the gut microbiota in a donor-independent manner that may be beneficial to human health. These findings provide a novel application for TSE harvested from tomato pomace and demonstrate the potential to further valorize tomato waste products.


Asunto(s)
Microbioma Gastrointestinal , Solanum lycopersicum , Humanos , Extractos Vegetales/química , Semillas/química , Antioxidantes/análisis , Prebióticos/análisis
3.
Microbiol Resour Announc ; 13(2): e0086223, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38236043

RESUMEN

We present a donor-specific collection of 78 metagenomes (13/donor) and 143 metagenome-assembled genomes (MAGs), representing the gut microbiomes of six healthy adult human donors. In addition to adding to the catalog of publicly available human gut MAGs, this resource permits a genome-resolved look into microbial co-occurrence across six individuals.

4.
Cell Mol Gastroenterol Hepatol ; 17(1): 131-148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37739064

RESUMEN

BACKGROUND & AIMS: Altered plasma acylcarnitine levels are well-known biomarkers for a variety of mitochondrial fatty acid oxidation disorders and can be used as an alternative energy source for the intestinal epithelium when short-chain fatty acids are low. These membrane-permeable fatty acid intermediates are excreted into the gut lumen via bile and are increased in the feces of patients with inflammatory bowel disease (IBD). METHODS: Herein, based on studies in human subjects, animal models, and bacterial cultures, we show a strong positive correlation between fecal carnitine and acylcarnitines and the abundance of Enterobacteriaceae in IBD where they can be consumed by bacteria both in vitro and in vivo. RESULTS: Carnitine metabolism promotes the growth of Escherichia coli via anaerobic respiration dependent on the cai operon, and acetylcarnitine dietary supplementation increases fecal carnitine levels with enhanced intestinal colonization of the enteric pathogen Citrobacter rodentium. CONCLUSIONS: In total, these results indicate that the increased luminal concentrations of carnitine and acylcarnitines in patients with IBD may promote the expansion of pathobionts belonging to the Enterobacteriaceae family, thereby contributing to disease pathogenesis.


Asunto(s)
Enterobacteriaceae , Enfermedades Inflamatorias del Intestino , Animales , Humanos , Enterobacteriaceae/metabolismo , Disbiosis , Enfermedades Inflamatorias del Intestino/microbiología , Carnitina/metabolismo , Ácidos Grasos/metabolismo , Escherichia coli , Biomarcadores
5.
Gastroenterology ; 166(2): 250-251, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38008229
6.
Front Cell Infect Microbiol ; 13: 1298392, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38145049

RESUMEN

Introduction: In traditional Chinese medicine, the rhizome of Atractylodes macrocephala (Baizhu), the leaves of Isatis indigotica (Daqingye), and the flowers of Albizia julibrissin (Hehuanhua) have been used to treat gastrointestinal illnesses, epidemics, and mental health issues. Modern researchers are now exploring the underlying mechanisms responsible for their efficacy. Previous studies often focused on the impact of purified chemicals or mixed extracts from these plants on cells in tissue culture or in rodent models. Methods: As modulation of the human gut microbiome has been linked to host health status both within the gastrointestinal tract and in distant tissues, the effects of lipid-free ethanol extracts of Baizhu, Daqingye, and Hehuanhua on the human adult gut microbiome were assessed using Systemic Intestinal Fermentation Research (SIFR®) technology (n=6). Results and discussion: Baizhu and Daqingye extracts similarly impacted microbial community structure and function, with the extent of effects being more pronounced for Baizhu. These effects included decreases in the Bacteroidetes phylum and increases in health-related Bifidobacterium spp. and short chain fatty acids which may contribute to Baizhu's efficacy against gastrointestinal ailments. The changes upon Hehuanhua treatment were larger and included increases in multiple bacterial species, including Agathobaculum butyriciproducens, Adlercreutzia equolifaciens, and Gordonibacter pamelaeae, known to produce secondary metabolites beneficial to mental health. In addition, many of the changes induced by Hehuanhua correlated with a rise in Enterobacteriaceae spp., which may make the tested dose of this herb contraindicated for some individuals. Overall, there is some evidence to suggest that the palliative effect of these herbs may be mediated, in part, by their impact on the gut microbiome, but more research is needed to elucidate the exact mechanisms.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicina Tradicional China
7.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003317

RESUMEN

Ivermectin is a an anti-helminthic that is critical globally for both human and veterinary care. To the best of our knowledge, information available regarding the influence of ivermectin (IVM) on the gut microbiota has only been collected from diseased donors, who were treated with IVM alone or in combination with other medicines. Results thus obtained were influenced by multiple elements beyond IVM, such as disease, and other medical treatments. The research presented here investigated the impact of IVM on the gut microbial structure established in a Triple-SHIME® (simulator of the human intestinal microbial ecosystem), using fecal material from three healthy adults. The microbial communities were grown using three different culture media: standard SHIME media and SHIME media with either soluble or insoluble fiber added (control, SF, ISF). IVM introduced minor and temporary changes to the gut microbial community in terms of composition and metabolite production, as revealed by 16S rRNA amplicon sequencing analysis, flow cytometry, and GC-MS. Thus, it was concluded that IVM is not expected to induce dysbiosis or yield adverse effects if administered to healthy adults. In addition, the donor's starting community influences the relationship between IVM and the gut microbiome, and the soluble fiber component in feed could protect the gut microbiota from IVM; an increase in short-chain fatty acid production was predicted by PICRUSt2 and detected with IVM treatment.


Asunto(s)
Microbioma Gastrointestinal , Ivermectina , Adulto , Humanos , Heces , Microbioma Gastrointestinal/genética , Ivermectina/farmacología , ARN Ribosómico 16S/genética
8.
Foods ; 12(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37297350

RESUMEN

In the present research, we investigated changes in the gut metabolome that occurred in response to the administration of the Laticaseibacillus rhamnosus strain GG (LGG). The probiotics were added to the ascending colon region of mature microbial communities established in a human intestinal microbial ecosystem simulator. Shotgun metagenomic sequencing and metabolome analysis suggested that the changes in microbial community composition corresponded with changes to metabolic output, and we can infer linkages between some metabolites and microorganisms. The in vitro method permits a spatially-resolved view of metabolic transformations under human physiological conditions. By this method, we found that tryptophan and tyrosine were mainly produced in the ascending colon region, while their derivatives were detected in the transverse and descending regions, revealing sequential amino acid metabolic pathways along with the colonic tract. The addition of LGG appeared to promote the production of indole propionic acid, which is positively associated with human health. Furthermore, the microbial community responsible for the production of indole propionic acid may be broader than is currently known.

9.
Foods ; 11(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496685

RESUMEN

Pectins are plant polysaccharides consumed as part of a diet containing fruits and vegetables. Inside the gastrointestinal tract, pectin cannot be metabolized by the mammalian cells but is fermented by the gut microbiota in the colon with the subsequent release of end products including short-chain fatty acids (SCFA). The prebiotic effects of pectin have been previously evaluated but reports are inconsistent, most likely due to differences in the pectin chemical structure which can vary by molecular weight (MW) and degree of esterification (DE). Here, the effects of two different MW lemon pectins with varying DEs on the gut microbiota of two donors were evaluated in vitro. The results demonstrated that low MW, high DE lemon pectin (LMW-HDE) altered community structure in a donor-dependent manner, whereas high MW, low DE lemon pectin (HMW-LDE) increased taxa within Lachnospiraceae in both donors. LMW-HDE and HMW-LDE lemon pectins both increased total SCFAs (1.49- and 1.46-fold, respectively) and increased acetic acid by 1.64-fold. Additionally, LMW-HDE lemon pectin led to an average 1.41-fold increase in butanoic acid. Together, these data provide valuable information linking chemical structure of pectin to its effect on the gut microbiota structure and function, which is important to understanding its prebiotic potential.

10.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361763

RESUMEN

The consumption of probiotics is widely encouraged due to reports of their positive effects on human health. In particular, Lacticaseibacillus rhamnosus strain GG (LGG) is an approved probiotic that has been reported to improve health outcomes, especially for gastrointestinal disorders. However, how LGG cooperates with the gut microbiome has not been fully explored. To understand the interaction between LGG and its ability to survive and grow within the gut microbiome, this study introduced LGG into established microbial communities using an in vitro model of the colon. LGG was inoculated into the simulated ascending colon and its persistence in, and transit through the subsequent transverse and descending colon regions was monitored over two weeks. The impact of LGG on the existing bacterial communities was investigated using 16S rRNA sequencing and short-chain fatty acid analysis. LGG was able to engraft and proliferate in the ascending region for at least 10 days but was diminished in the transverse and descending colon regions with little effect on short-chain fatty acid abundance. These data suggest that the health benefits of the probiotic LGG rely on its ability to transiently engraft and modulate the host microbial community.


Asunto(s)
Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus , Probióticos , Humanos , ARN Ribosómico 16S/genética , Ácidos Grasos Volátiles
11.
Nutrients ; 14(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35276931

RESUMEN

It is becoming increasingly important for any project aimed at understanding the effects of diet on human health, to also consider the combined effect of the trillions of microbes within the gut which modify and are modified by dietary nutrients. A healthy microbiome is diverse and contributes to host health, partly via the production and subsequent host absorption of secondary metabolites. Many of the beneficial bacteria in the gut rely on specific nutrients, such as dietary fiber, to survive and thrive. In the absence of those nutrients, the relative proportion of good commensal bacteria dwindles while communities of opportunistic, and potentially pathogenic, bacteria expand. Therefore, it is unsurprising that both diet and the gut microbiome have been associated with numerous human diseases. Inflammatory bowel diseases and colorectal cancer are associated with the presence of certain pathogenic bacteria and risk increases with consumption of a Western diet, which is typically high in fat, protein, and refined carbohydrates, but low in plant-based fibers. Indeed, despite increased screening and better care, colorectal cancer is still the 2nd leading cause of cancer death in the US and is the 3rd most diagnosed cancer among US men and women. Rates are rising worldwide as diets are becoming more westernized, alongside rising rates of metabolic diseases like obesity and diabetes. Understanding how a modern diet influences the microbiota and how subsequent microbial alterations effect human health will become essential in guiding personalized nutrition and healthcare in the future. Herein, we will summarize some of the latest advances in understanding of the three-way interaction between the human host, the gut microbiome, and the specific class of dietary nutrients, lipids.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Dieta , Femenino , Humanos , Lípidos , Nutrientes
12.
Genome Biol ; 13(12): R121, 2012 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-23259597

RESUMEN

BACKGROUND: Although quiescence (reversible cell cycle arrest) is a key part in the life history and fate of many mammalian cell types, the mechanisms of gene regulation in quiescent cells are poorly understood. We sought to clarify the role of microRNAs as regulators of the cellular functions of quiescent human fibroblasts. RESULTS: Using microarrays, we discovered that the expression of the majority of profiled microRNAs differed between proliferating and quiescent fibroblasts. Fibroblasts induced into quiescence by contact inhibition or serum starvation had similar microRNA profiles, indicating common changes induced by distinct quiescence signals. By analyzing the gene expression patterns of microRNA target genes with quiescence, we discovered a strong regulatory function for miR-29, which is downregulated with quiescence. Using microarrays and immunoblotting, we confirmed that miR-29 targets genes encoding collagen and other extracellular matrix proteins and that those target genes are induced in quiescence. In addition, overexpression of miR-29 resulted in more rapid cell cycle re-entry from quiescence. We also found that let-7 and miR-125 were upregulated in quiescent cells. Overexpression of either one alone resulted in slower cell cycle re-entry from quiescence, while the combination of both together slowed cell cycle re-entry even further. CONCLUSIONS: microRNAs regulate key aspects of fibroblast quiescence including the proliferative state of the cells as well as their gene expression profiles, in particular, the induction of extracellular matrix proteins in quiescent fibroblasts.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Proteínas de la Matriz Extracelular/biosíntesis , Regulación de la Expresión Génica , MicroARNs/metabolismo , Ciclo Celular , Proliferación Celular , Células Cultivadas , Colágeno/biosíntesis , Colágeno/genética , Proteínas de la Matriz Extracelular/genética , Fibroblastos/metabolismo , Redes Reguladoras de Genes , Humanos , MicroARNs/fisiología , Chaperonas Moleculares/biosíntesis , Chaperonas Moleculares/genética , Factor de Crecimiento Transformador beta/fisiología
13.
Mol Biol Cell ; 23(18): 3566-81, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22875985

RESUMEN

Proteasome inhibition is used as a treatment strategy for multiple types of cancers. Although proteasome inhibition can induce apoptotic cell death in actively proliferating cells, it is less effective in quiescent cells. In this study, we used primary human fibroblasts as a model system to explore the link between the proliferative state of a cell and proteasome inhibition-mediated cell death. We found that proliferating and quiescent fibroblasts have strikingly different responses to MG132, a proteasome inhibitor; proliferating cells rapidly apoptosed, whereas quiescent cells maintained viability. Moreover, MG132 treatment of proliferating fibroblasts led to increased superoxide anion levels, juxtanuclear accumulation of ubiquitin- and p62/SQSTM1-positive protein aggregates, and apoptotic cell death, whereas MG132-treated quiescent cells displayed fewer juxtanuclear protein aggregates, less apoptosis, and higher levels of mitochondrial superoxide dismutase. In both cell states, reducing reactive oxygen species with N-acetylcysteine lessened protein aggregation and decreased apoptosis, suggesting that protein aggregation promotes apoptosis. In contrast, increasing cellular superoxide levels with 2-methoxyestradiol treatment or inhibition of autophagy/lysosomal pathways with bafilomycin A1 sensitized serum-starved quiescent cells to MG132-induced apoptosis. Thus, antioxidant defenses and the autophagy/lysosomal pathway protect serum-starved quiescent fibroblasts from proteasome inhibition-induced cytotoxicity.


Asunto(s)
Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Leupeptinas/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , 2-Metoxiestradiol , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Inhibidores de Cisteína Proteinasa/farmacología , Estradiol/análogos & derivados , Estradiol/farmacología , Fibroblastos/citología , Citometría de Flujo , Prepucio/citología , Humanos , Immunoblotting , Macrólidos/farmacología , Masculino , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteína Sequestosoma-1 , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Ubiquitina/genética , Ubiquitina/metabolismo
14.
Cell Cycle ; 11(9): 1680-96, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22510571

RESUMEN

Quiescence is a state of reversible cell cycle arrest that can grant protection against many environmental insults. In some systems, cellular quiescence is associated with a low metabolic state characterized by a decrease in glucose uptake and glycolysis, reduced translation rates and activation of autophagy as a means to provide nutrients for survival. For cells in multiple different quiescence model systems, including Saccharomyces cerevisiae, mammalian lymphocytes and hematopoietic stem cells, the PI3Kinase/TOR signaling pathway helps to integrate information about nutrient availability with cell growth rates. Quiescence signals often inactivate the TOR kinase, resulting in reduced cell growth and biosynthesis. However, quiescence is not always associated with reduced metabolism; it is also possible to achieve a state of cellular quiescence in which glucose uptake, glycolysis and flux through central carbon metabolism are not reduced. In this review, we compare and contrast the metabolic changes that occur with quiescence in different model systems.


Asunto(s)
Adaptación Fisiológica , Puntos de Control del Ciclo Celular , Escherichia coli/metabolismo , Células Madre Hematopoyéticas/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Autofagia , Proliferación Celular , Escherichia coli/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Glucosa/metabolismo , Glucólisis , Células Madre Hematopoyéticas/citología , Humanos , Activación de Linfocitos , Fosfatidilinositol 3-Quinasa/metabolismo , Saccharomyces cerevisiae/citología , Transducción de Señal , Linfocitos T/citología , Linfocitos T/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
15.
Genes Dev ; 25(5): 460-70, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21317241

RESUMEN

Autophagy is a catabolic pathway used by cells to support metabolism in response to starvation and to clear damaged proteins and organelles in response to stress. We report here that expression of a H-ras(V12) or K-ras(V12) oncogene up-regulates basal autophagy, which is required for tumor cell survival in starvation and in tumorigenesis. In Ras-expressing cells, defective autophagosome formation or cargo delivery causes accumulation of abnormal mitochondria and reduced oxygen consumption. Autophagy defects also lead to tricarboxylic acid (TCA) cycle metabolite and energy depletion in starvation. As mitochondria sustain viability of Ras-expressing cells in starvation, autophagy is required to maintain the pool of functional mitochondria necessary to support growth of Ras-driven tumors. Human cancer cell lines bearing activating mutations in Ras commonly have high levels of basal autophagy, and, in a subset of these, down-regulating the expression of essential autophagy proteins impaired cell growth. As cancers with Ras mutations have a poor prognosis, this "autophagy addiction" suggests that targeting autophagy and mitochondrial metabolism are valuable new approaches to treat these aggressive cancers.


Asunto(s)
Autofagia/fisiología , Metabolismo Energético , Regulación Neoplásica de la Expresión Génica , Genes ras/genética , Animales , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Células HCT116 , Humanos , Ratones , Mitocondrias/metabolismo , Oxidación-Reducción , Inanición
16.
Genes Dev ; 24(24): 2784-99, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21106670

RESUMEN

Glucose and glutamine serve as the two primary carbon sources in proliferating cells, and uptake of both nutrients is directed by growth factor signaling. Although either glucose or glutamine can potentially support mitochondrial tricarboxylic acid (TCA) cycle integrity and ATP production, we found that glucose deprivation led to a marked reduction in glutamine uptake and progressive cellular atrophy in multiple mammalian cell types. Despite the continuous presence of growth factor and an abundant supply of extracellular glutamine, interleukin-3 (IL-3)-dependent cells were unable to maintain TCA cycle metabolite pools or receptor-dependent signal transduction when deprived of glucose. This was due at least in part to down-regulation of IL-3 receptor α (IL-3Rα) surface expression in the absence of glucose. Treatment of glucose-starved cells with N-acetylglucosamine (GlcNAc) to maintain hexosamine biosynthesis restored mitochondrial metabolism and cell growth by promoting IL-3-dependent glutamine uptake and metabolism. Thus, glucose metabolism through the hexosamine biosynthetic pathway is required to sustain sufficient growth factor signaling and glutamine uptake to support cell growth and survival.


Asunto(s)
Glucosa/metabolismo , Glutamina/metabolismo , Hexosaminas/biosíntesis , Redes y Vías Metabólicas , Acetilglucosamina/farmacología , Animales , Atrofia , Transporte Biológico , Supervivencia Celular , Ciclo del Ácido Cítrico , Péptidos y Proteínas de Señalización Intercelular/farmacología , Interleucina-3 , Ratones , Transducción de Señal
17.
PLoS Biol ; 8(10): e1000514, 2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-21049082

RESUMEN

Many cells in mammals exist in the state of quiescence, which is characterized by reversible exit from the cell cycle. Quiescent cells are widely reported to exhibit reduced size, nucleotide synthesis, and metabolic activity. Much lower glycolytic rates have been reported in quiescent compared with proliferating lymphocytes. In contrast, we show here that primary human fibroblasts continue to exhibit high metabolic rates when induced into quiescence via contact inhibition. By monitoring isotope labeling through metabolic pathways and quantitatively identifying fluxes from the data, we show that contact-inhibited fibroblasts utilize glucose in all branches of central carbon metabolism at rates similar to those of proliferating cells, with greater overflow flux from the pentose phosphate pathway back to glycolysis. Inhibition of the pentose phosphate pathway resulted in apoptosis preferentially in quiescent fibroblasts. By feeding the cells labeled glutamine, we also detected a "backwards" flux in the tricarboxylic acid cycle from α-ketoglutarate to citrate that was enhanced in contact-inhibited fibroblasts; this flux likely contributes to shuttling of NADPH from the mitochondrion to cytosol for redox defense or fatty acid synthesis. The high metabolic activity of the fibroblasts was directed in part toward breakdown and resynthesis of protein and lipid, and in part toward excretion of extracellular matrix proteins. Thus, reduced metabolic activity is not a hallmark of the quiescent state. Quiescent fibroblasts, relieved of the biosynthetic requirements associated with generating progeny, direct their metabolic activity to preservation of self integrity and alternative functions beneficial to the organism as a whole.


Asunto(s)
Fibroblastos/metabolismo , Glucólisis/fisiología , Animales , Apoptosis , Carbono/metabolismo , Ciclo Celular , Proliferación Celular , Células Cultivadas , Ciclo del Ácido Cítrico/fisiología , Ácidos Grasos/metabolismo , Fibroblastos/citología , Glucosa/metabolismo , Humanos , Isótopos/metabolismo , Vía de Pentosa Fosfato/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA